Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
1.
Soil Systems ; 7(1), 2023.
Article in English | Scopus | ID: covidwho-2275549

ABSTRACT

When residents of Volos, a city in central Greece, are trying to recall their daily life after the end of the quarantine due to COVID-19, the soil pollution survey provided valuable insights, which are compared with a 4-year study carried out in that area before the pandemic period. Using appropriate indices, namely contamination factor (CF), pollution load index (PLI), geo-accumulation index (Igeo), ecological risk factor (Er), and potential ecological risk index (RI), and using geostatistical tools, maps were constructed for each metal (Cu, Zn, Pb, Ni, Cd, Co, Cr, Mn). Variations in the values of the contamination indices showed a significant redistribution in pollutant load from areas previously polluted by high vehicle traffic and the activities of the main port to the residential areas, where the habitants have their homes and playgrounds. The study showed that Cu, Zn, Pb, and Co concentrations increased during the pandemic period by 10%, 22.7%, 3.7%, and 23.1%, respectively. Ni's concentration remained almost constant, while Cd, Cr, and Mn concentrations were decreased by 21.6%, 22.2%, and 9.5%, respectively. Fluctuations in the concentrations and corresponding contamination and ecological indices of the elements can serve as a means for highlighting potential sources of pollution. Therefore, although the pandemic period created anxiety, stress, and economic hardship for citizens, it may prove to be a valuable tool for investigating the sources of pollution in urban soils. The study of these results could potentially lead to optimal ways for managing the environmental crisis and solve persistent problems that pose risks to both the soil environment and human health. © 2023 by the authors.

2.
Water Res ; 233: 119783, 2023 Apr 15.
Article in English | MEDLINE | ID: covidwho-2268968

ABSTRACT

Organophosphate esters (OPEs) are a group of synthetic chemicals used in numerous consumer products such as plastics and furniture. The Coronavirus Disease 2019 (COVID-19) pandemic significantly slowed anthropogenic activities and reduced the emissions of pollutants. Meanwhile, the mismanagement of large quantities of disposable plastic facemasks intensified the problems of plastic pollution and leachable pollutants in coastal waters. In this study, the joint effects of the COVID-19 outbreak on the occurrence of 12 targeted OPEs in the waters of Laizhou Bay (LZB) were investigated. The results showed that the median total OPE concentrations were 725, 363, and 109 ng L-1 in the sewage treatment plant effluent, river water, and bay water in 2021, decreased significantly (p < 0.05) by 67%, 68%, and 70%, respectively, compared with those before the COVID-19 outbreak. The release potential of targeted OPEs from disposable surgical masks in the LZB area was ∼0.24 kg yr-1, which was insufficient to increase the OPE concentration in the LZB waters. The concentrations of most individual OPEs significantly decreased in LZB waters from 2019 to 2021, except for TBOEP and TNBP. Spatially, a lower concentration of OPEs was found in the Yellow River estuary area in 2021 compared with that before the COVID-19 pandemic due to the high content of suspended particulate matter in the YR. A higher total OPE concentration was observed along the northeastern coast of LZB, mainly owing to the construction of an artificial island since 2020. The ecological risks of the OPE mixture in LZB waters were lower than those before the COVID-19 outbreak. However, TCEP, TNBP, and BDP should receive continuous attention because of their potential ecological risks to aquatic organisms.


Subject(s)
COVID-19 , Environmental Pollutants , Flame Retardants , Humans , Pandemics , Bays , Environmental Monitoring/methods , Esters/analysis , Flame Retardants/analysis , COVID-19/epidemiology , Organophosphates/analysis , Water , Plastics , China/epidemiology
3.
Science of the Total Environment ; 857, 2023.
Article in English | Scopus | ID: covidwho-2242733

ABSTRACT

The Bohai Bay as a typical semi-enclosed bay in northern China with poor water exchange capacity and significant coastal urbanization, is greatly influenced by land-based inputs and human activities. As a class of pseudo-persistent organic pollutants, the spatial and temporal distribution of Pharmaceuticals and Personal Care Products (PPCPs) is particularly important to the ecological environment, and it will be imperfect to assess the ecological risk of PPCPs for the lack of systematic investigation of their distribution in different season. 14 typical PPCPs were selected to analyze the spatial and temporal distribution in the Bohai Bay by combining online solid-phase extraction (SPE) and HPLC-MS/MS techniques in this study, and their ecological risks to aquatic organisms were assessed by risk quotients (RQs) and concentration addition (CA) model. It was found that PPCPs widely presented in the Bohai Bay with significant differences of spatial and seasonal distribution. The concentrations of ∑PPCPs were higher in autumn than in summer. The distribution of individual pollutants also showed significant seasonal differences. The high values were mainly distributed in estuaries and near-shore outfalls. Mariculture activities in the northern part of the Bohai Bay made a greater contribution to the input of PPCPs. Caffeine, florfenicol, enrofloxacin and norfloxacin were the main pollutants in the Bohai Bay, with detection frequencies exceeding 80 %. The ecological risk of PPCPs to algae was significantly higher than that to invertebrates and fish. CA model indicated that the potential mixture risk of total PPCPs was not negligible, with 34 % and 88 % of stations having mixture risk in summer and autumn, respectively. The temporary stagnation of productive life caused by Covid-19 weakened the input of PPCPs to the Bohai Bay, reducing the cumulative effects of the pollutants. This study was the first full-coverage investigation of PPCPs in the Bohai Bay for different seasons, providing an important basis for the ecological risk assessment and pollution prevention of PPCPs in the bay. © 2022 Elsevier B.V.

4.
China Geology ; 5(3):411-420, 2022.
Article in English | Scopus | ID: covidwho-2056987

ABSTRACT

A large number of antibiotics have been discharged into rivers by human activities, posing a threat to aquatic ecosystems. The surface water of the Yellow River Basin also suffers antibiotic pollution, which hinders the improvement in the aquatic ecological environment. This study investigated and analyzed the characteristics and assessed the ecological risks of antibiotic pollution in surface water bodies such as canals, rivers and fish ponds in Kaifeng, Henan Province, which is a key city along the lower reaches of the Yellow River. The test results are as follows. A total of 15 types of antibiotics were detected in the surface water. They had a total antibiotic concentration of 12.2–249.9 μg/L, of which tetracyclines (TCs) and quinolones accounted for the highest percentages. Six types of quinolones had detection rates of up to 100%, and doxycycline (DC) and oxytetracycline (OTC) had average concentrations of 29.52 μg/L1 and 13.71 μg/L, respectively. The major canals with water diverted from the Yellow River had total concentrations of quinolones and TCs of 22. 0 μg/L and 14.9 μg/L, respectively, which were higher than those in previous studies. This phenomenon may be related to the decrease in the water flow of the Yellow River during the dry season and the increase in the antibiotic consumption of residents in the context of the Covid-19 outbreak. The upper reaches of the Huiji River in the Xiangfu District had higher antibiotic content than other districts in Kaifeng. Specifically, TCs accounted for 72.38%–91.84% of all antibiotics, and the DC and OTC concentrations were significantly higher than other antibiotics in the upper reaches. As indicated by the ecological risk assessment results, TCs had the highest ecological risks to green algae. Among them, DC had medium-high risks;TC, OTC, and chlortetracycline (CTC) had medium-high risks;trimethoprim (TMP) and lomefloxacin (LOM) had low risks;other TC antibiotics had no risk. Compared with green algae, most antibiotics showed higher ecological risks to daphnia and lower ecological risks to fish. DC and OTC dominate antibiotic pollutants in the surface water in Kaifeng City, and especially in Xiangfu District, where DC and OTC have medium-high risks. The TCs in the major Yellow River showed medium risks to both green algae and daphnia. It can be speculated that the antibiotic pollution in the Yellow River might pose a certain threat to the ecological security of water in Kaifeng City. ©2022 China Geology Editorial Office. © 2022 Editorial Office of China Geology. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd

5.
Environ Toxicol Chem ; 41(10): 2613-2621, 2022 10.
Article in English | MEDLINE | ID: covidwho-2027344

ABSTRACT

Increased disinfection efforts in various parts of China, including Hong Kong, to prevent the spread of the novel coronavirus may lead to elevated concentrations of disinfectants in domestic sewage and surface runoff in Hong Kong, generating large quantities of toxic disinfection byproducts. Our study investigated the presence and distribution of four trihalomethanes (THMs), six haloacetic acids (HAAs), and eight nitrosamines (NAMs) in rivers and seawater in Hong Kong. The concentrations of THMs (mean concentration: 1.6 µg/L [seawater], 3.0 µg/L [river water]), HAAs (mean concentration: 1.4 µg/L [seawater], 1.9 µg/L [river water]), and NAMs (mean concentration: 4.4 ng/L [seawater], 5.6 ng/L [river water]) did not significantly differ between river water and seawater. The total disinfection byproduct content in river water in Hong Kong was similar to that in Wuhan and Beijing (People's Republic of China), and the total THM concentration in seawater was significantly higher than that before the COVID-19 pandemic. Among the regulated disinfection byproducts, none of the surface water samples exceeded the maximum index values for THM4 (80 µg/L), HAA5 (60 µg/L), and nitrosodimethylamine (100 ng/L) in drinking water. Among the disinfection byproducts detected, bromoform in rivers and seawater poses the highest risk to aquatic organisms, which warrants attention and mitigation efforts. Environ Toxicol Chem 2022;41:2613-2621. © 2022 SETAC.


Subject(s)
COVID-19 , Disinfectants , Drinking Water , Water Pollutants, Chemical , Water Purification , Dimethylnitrosamine , Disinfectants/analysis , Disinfection , Halogenation , Hong Kong , Humans , Pandemics , Pilot Projects , Sewage , Trihalomethanes/analysis , Water Pollutants, Chemical/analysis
6.
EFSA Journal ; 19(5), 2022.
Article in English | ProQuest Central | ID: covidwho-1875329

ABSTRACT

This report evaluates the training courses delivered under the contract OC/EFSA/SCN1 -https://media.proquest.com/media/hms/PFT/1/vIJ9N?_a=ChgyMDIyMDYwMTE2MzUzMDEwMTozMjU2OTASBTg4MjU5GgpPTkVfU0VBUkNIIg4xNTguMTExLjIzNi45NSoHNTA2NjE2OTIKMjY3MTU2NTMwMDoNRG9jdW1lbnRJbWFnZUIBMFIGT25saW5lWgJGVGIDUEZUagoyMDIyLzA1LzAxcgoyMDIyLzA1LzMxegCCATJQLTEwMDcxNjAtMjY3MjQtQ1VTVE9NRVItMTAwMDAyMzQvMTAwMDAwMzUtNTgyMTE0N5IBBk9ubGluZcoBc01vemlsbGEvNS4wIChXaW5kb3dzIE5UIDEwLjA7IFdpbjY0OyB4NjQpIEFwcGxlV2ViS2l0LzUzNy4zNiAoS0hUTUwsIGxpa2UgR2Vja28pIENocm9tZS8xMDIuMC41MDA1LjYzIFNhZmFyaS81MzcuMzbSARJTY2hvbGFybHkgSm91cm5hbHOaAgdQcmVQYWlkqgIrT1M6RU1TLU1lZGlhTGlua3NTZXJ2aWNlLWdldE1lZGlhVXJsRm9ySXRlbcoCD0FydGljbGV8RmVhdHVyZdICAVnyAgD6AgFZggMDV2ViigMcQ0lEOjIwMjIwNjAxMTYzNTMwMTAxOjM4MjkwNg%3D%3D&_s=2ZOX7J4w4lftnvbm53vy0sKE9lQ%3D ER/2017/01 ‐ Lot 1. Within the period of January 2018 to February 2022 a total of 21 training courses were provided, eight on‐site training courses in Parma at EFSA, six virtual training courses during the Covid‐19 pandemic and seven eLearning courses comprising various numbers of modules.The courses covered different aspects of chemical and biological risk assessment and related tools, namely i) harmonisation of risk assessment methodologies for human health and ecological risk assessment of combined exposure to multiple chemicals (mixture assessment), ii) risk assessment of the application of nanoscience and nanotechnologies in agro/food/feed (nanotoxicity);iii) science‐based criteria for identifying endocrine disruptors in the context of EU legislation on pesticides and biocides (endocrine disruption);iv) principles on genotoxicity on scientific assessment (genotoxicity) and v) computational toxicology approaches and tools (in silico). All tutors were experts in their field and had previously performed training courses on these topics.The target participants of the training courses were members of EFSA’s Scientific Committee/Panels and their working groups as well as employees from national and international regulatory agencies associated with risk assessment of feed and food compounds. Members of the EFSA Networks as well as EFSA scientific staff also participated in the training courses.Courses were evaluated based on the feedback of participants and continuously improved also by integrating updated or new EFSA guidance documents.

7.
Huan Jing Ke Xue ; 43(6): 2996-3004, 2022 Jun 08.
Article in Chinese | MEDLINE | ID: covidwho-1876194

ABSTRACT

The seasonal variation and spatial distribution of pharmaceuticals in typical drinking water sources in the middle reaches of the Yangtze River were analyzed using the solid-phase extraction and high-performance liquid chromatography-tandem mass spectrometry methods. Combined with the risk entropy method, the corresponding ecological risks for aquatic organisms were evaluated. The results showed that 80% of the target pharmaceuticals were detected in the drinking water sources, with average concentrations of 0.07-13.00 ng·L-1. The concentrations of the target pharmaceuticals were lower than or comparable with those in other drinking water sources reported in China. The spatiotemporal distribution of different pharmaceuticals varied. Generally, the detection level in winter was higher than that in summer, and there was no significant difference between that upstream and that downstream. This might be mainly attributed to seasonal/regional use and emissions of the pharmaceuticals, the impact of flow rate on dilution, and the impact of temperature on biodegradation. Compared with those before the COVID-19 epidemic, the detection concentrations of the target pharmaceuticals were relatively low. The reason for this might be that the prevention and control of the epidemic reduced the use and emission of the pharmaceuticals to a certain extent, and the high rainfall and runoff strengthened the dilution of water flow. The target pharmaceuticals, especially antibiotics, posed medium or low risks to aquatic organisms (especially algae). Considering the ecological risks and genotoxicity of pharmaceuticals and the potential risks of antibiotic-resistant genes, it is suggested to strengthen the investigation, evaluation, treatment, and control of pharmaceuticals in the water environment.


Subject(s)
COVID-19 , Drinking Water , Water Pollutants, Chemical , Anti-Bacterial Agents/analysis , Aquatic Organisms , China , Drinking Water/analysis , Environmental Monitoring/methods , Humans , Pharmaceutical Preparations , Risk Assessment , Water Pollutants, Chemical/analysis
8.
Huanjing Kexue/Environmental Science ; 43(5):2557-2565, 2022.
Article in Chinese | Scopus | ID: covidwho-1835958

ABSTRACT

To reveal the spatiotemporal distribution and risks of plastic additives in Taihu Lake during the COVID-19 pandemic, the occurrences of typical bisphenols, phthalate esters, and benzotriazoles in the surface water of Taihu Lake were investigated. The plastic additives in 19 sites in Taihu Lake were monitored in four seasons, and their potential ecological risks were evaluated. Diethylphthalate (DEP), dimethoxyethyl phthalate (DMEP), benzyl butyl phthalate (BBP), bisphenol A (BPA), and 2-(2H-benzotriazol-2-yl)-4, 6-di-tert-pentylphenol (UV-328) were detected, with detection rates of 100%, 97%, 58%, 98%, and 7%, respectively. During the COVID-19 pandemic, the sharply increasing usage of plastic products did not result in a significant increase in the plastic additives pollution in Taihu Lake. Conversely, the pollution of plastic additives showed a decreasing trend due to reduced human activities. There were significant seasonal differences in the concentrations of plastic additives in Taihu Lake. The average concentrations of plastic additives in spring and summer were 104.7 and 100.3 ng•L-1, respectively, which were higher than those in autumn (30.7 ng•L-1) and winter (29.9 ng•L-1). The plastic additive pollution also showed some differences in spatial distribution. The concentrations of plastic additives near the southwest coast of Taihu Lake were higher than those in other monitoring sites. The presence of plastic additives in Taihu Lake showed low risks to algae with the proportion of 30%. The risks in autumn and winter were higher than those in spring and summer. BPA and UV-328 may have been the main risk factors, which should be of concern. © 2022, Science Press. All right reserved.

9.
Sci Total Environ ; 812: 152485, 2022 Mar 15.
Article in English | MEDLINE | ID: covidwho-1783734

ABSTRACT

This study identified ecological and human health risks exposure of COVID-19 pharmaceuticals and their metabolites in environmental waters. Environmental concentrations in aquatic species were predicted using surface water concentrations of pharmaceutical compounds. Predicted No-Effect Concentrations (PNEC) in aquatic organisms (green algae, daphnia, and fish) was estimated using EC50/LC50 values of pharmaceutical compounds taken from USEPA ECOSAR database. PNEC for human health risks was calculated using the acceptable daily intake values of drugs. Ecological PNEC revealed comparatively high values in algae (Chronic toxicity PNEC values, high to low: ribavirin (2.65 × 105 µg/L) to ritonavir (2.3 × 10-1 µg/L)) than daphnia and fish. Risk quotient (RQ) analysis revealed that algae (Avg. = 2.81 × 104) appeared to be the most sensitive species to pharmaceutical drugs followed by daphnia (Avg.: 1.28 × 104) and fish (Avg.: 1.028 × 103). Amongst the COVID-19 metabolites, lopinavir metabolites posed major risk to aquatic species. Ritonavir (RQ = 6.55) is the major drug responsible for human health risk through consumption of food (in the form fish) grown in pharmaceutically contaminated waters. Mixture toxicity analysis of drugs revealed that algae are the most vulnerable species amongst the three trophic levels. Maximum allowable concentration level for mixture of pharmaceuticals was found to be 0.53 mg/L.


Subject(s)
COVID-19 , Pharmaceutical Preparations , Water Pollutants, Chemical , Animals , Daphnia , Environmental Monitoring , Humans , Risk Assessment , SARS-CoV-2 , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/toxicity
10.
Int J Environ Res Public Health ; 19(3)2022 Jan 31.
Article in English | MEDLINE | ID: covidwho-1667157

ABSTRACT

In the turbulent year 2020, overshadowed by the global COVID-19 pandemic, Austria experienced multiple waves of increased case incidence. While governmental measures to curb the numbers were based on current knowledge of infection risk factors, a retrospective analysis of incidence and lethality at the district level revealed correlations of relative infection risk with socioeconomic, geographical, and behavioral population parameters. We identified unexpected correlations between political orientation and smoking behavior and COVID-19 infection risk and/or mortality. For example, a decrease in daily smokers by 2.3 percentage points would be associated with an increase in cumulative incidence by 10% in the adjusted model, and an increase in voters of the right-wing populist party by 1.6 percentage points with an increase in cumulative mortality by 10%. While these parameters are apparently only single elements of complex causal chains that finally lead to individual susceptibility and vulnerability levels, our findings might have identified ecological parameters that can be utilized to develop fine-tuned communications and measures in upcoming challenges of this and other pandemics.


Subject(s)
COVID-19 , Pandemics , Austria/epidemiology , Humans , Retrospective Studies , SARS-CoV-2
11.
Sci Total Environ ; 811: 151409, 2022 Mar 10.
Article in English | MEDLINE | ID: covidwho-1500240

ABSTRACT

In this study, concentrations of disinfection byproducts (DBPs) and COVID-19 related pharmaceuticals in wastewater effluents and surface water were measured two weeks, three months and eight months after the lockdown in Wuhan. Little temporal variation in DBP concentrations suggested intensified disinfection during the COVID-19 pandemic had limited impacts on the occurrence of DBPs in the aquatic environment. In contrast, the pandemic led to a significant increase in concentrations of lopinavir and ritonavir in wastewater effluents and surface water. The high detection frequency of these pharmaceuticals in surface water after the lockdown highlighted their mobility and persistence in the aquatic environment. The initial ecological risk assessment indicated moderate risks associated with these pharmaceuticals in surface water. As the global situation is still rapidly evolving with a continuous surge in the number of confirmed COVID-19 cases, our results suggest a pressing need for monitoring COVID-19 related pharmaceuticals as well as a systematic evaluation of their ecotoxicities in the aquatic environment.


Subject(s)
COVID-19 , Disinfectants , Pharmaceutical Preparations , Water Pollutants, Chemical , Water Purification , Communicable Disease Control , Disinfection , Halogenation , Humans , Pandemics , SARS-CoV-2 , Water Pollutants, Chemical/analysis
SELECTION OF CITATIONS
SEARCH DETAIL